师资结构

陈 煜


理学博士,南京大学,2006.09-2009.02

教授 (博导),d3顶盛体育官网,2015.12-至今

Tel: 029-81530728

E-mail: ndchenyu@gmail.com  chenyu001@snnu.edu.cn

Office:致知楼2436

Lab: 致知楼2526-2527


招生专业:无机化学、材料物理与化学、材料学


undefined

目前主要从事结构功能纳米材料的设计合成及其在化学/电化学能量转换技术方面的工作。

(i) 高性能低温燃料电池阴/阳极贵金属纳米晶电催化剂的设计合成。

(ii) 高分子聚合物-贵金属纳米晶有机-无机复合材料的界面结构-催化活性相互关系研究。

(iii) 原子厚超薄二维过渡金属/贵金属纳米材料的设计合成及其在水电解池、氮气电化学还原和化学产氢领域中的应用。

(iv) 碳材料在金属空气电池和水电解池领域中的应用。

undefined


Frontiers in Nanotechnology 副主编、Sustainable Materials and Technologies编委、Chinese Journal of Structural Chemistry编委、Chinese Journal of Catalysis青年编委、Chinese Chemical Letters青年编委、Journal of Energy Chemistry客座编辑、Chinese Journal of Catalysis客座编辑、Chinese Journal of Structural Chemistry客座编辑。

科技部、教育部、国家科技奖励办国家自然科学基金委多省科技厅科研项目/人才计划/科技奖励函评/会评专家。

Advanced Energy Materials、Advanced Materials、Angewandte Chemie International Edition、Nature Communications、Journal of the American Chemical Society、ACS Catalysis、ACS Energy Letters、ACS Central Science、Small、Journal of Materials Chemistry A、Chemical Science、Nano Energy、Applied Catalysis B-Environmental等期刊审稿人。

undefined

陕西省创新人才推进计划-先进能源转化材料与器件创新团队负责人,近年主持国家自然科学基金4项和江苏/陕西省自然科学基金4项。获2022年陕西高等学校科学技术研究优秀成果奖一等奖1(排名第一)、2021年陕西高等学校科学技术奖二等奖1项(排名第一)、2020年中国发明协会第二届发明创业成果奖二等奖1项(排名第二)、陕西省自然科学优秀学术论文2篇(2019/2022)。

英国皇家学会TOP1%高被引中国作者、全球前2%顶尖科学家-终生科学影响力榜单

作为通讯作者在Chemical Society ReviewsAngewandte Chemie International EditionEnergy & Environmental ScienceAdvanced MaterialsAdvanced Energy MaterialsAdvanced Functional MaterialsAdvanced ScienceChemical ScienceACS CatalysisNano EnergyApplied Catalysis B-EnvironmentalSmallScience BulletinJournal of Energy ChemistryChinese Journal of CatalysisCarbon EnergyeScience等能源/材料期刊发表SCI论文180余篇,被引16,000余次,H-index7628篇论文被评为全球ESI高被引(1%)论文。合作编辑《Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies2章、授权中国发明专利30项。

undefined

本科生获陕西省“挑战杯”大学生课外学术科技作品竞赛省级一等奖2项(2019/2021)、研究生获陕西省研究生创新成果展一/二等奖4项(2017/2019/2022)、CSC博士联合培养项目5项(2018-2022)。

博士后:独立/联合培养博士后4名,4人获国家自然科学基金项目(青年)资助、3人获中国国家博士后项目资助、1人获玛丽·居里学者项目资助。

博士:独立/联合培养毕业博士7名,2人博士毕业直聘副教授,1人获批江苏省特聘教授,1人获Discovery Early Career Researcher Award(澳大利亚优秀青年基金)项目资助。

硕士:独立/联合培养毕业硕士20名,人进入清华、复旦、天大、南开、南大等高校继续攻读博士学位。多人已取得教授/副教授高级职称,1人获国家优秀青年基金项目资助。

本科:培养本科生30余名进行科研训练和本科毕业论文设计,本科生第一作者/并列一作发表学术论文20篇,人进入昆士兰科技大学、纽卡斯尔大学、清华、复旦、武大、吉大等一流高校攻读硕/博士学位。多人已取得教授/副教授高级职称、1人获国家优秀青年基金项目(海外)资助、2人获中国科学院人才计划(A类)资助、1人获批江苏省特聘教授、1人获博新计划项目资助。

undefined

  1. RhNi bimetallenes with lattice-compressed Rh skin towards ultrastable acidic nitrate electroreduction. Advanced Materials 2024 DOI: 10.1002/adma.202314351

  2. Engineering low-coordination atoms on RhPt bimetallene for 12-electron ethanol electrooxidation. Energy & Environmental Science. 2024 , 17, 2219.

  3. RhCuBi trimetallenes with composition segregation coupled crystalline-amorphous heterostructure toward ethanol electrooxidation. Advanced Energy Materials 2024 DOI: 10.1002/aenm.202400112

  4. Electroenzymatic cascade reaction on a biohybrid boosts the chiral epoxidation reaction. Science Bulletin 2024, 69, 483.

  5. Palladium-boride nanoflowers with controllable boron content for formic acid electrooxidation. Advanced Functional Materials 2024 DOI: 10.1002/adfm.202402485

  6. Borate anion-intercalated NiV-LDH nanoflakes/NiCoP nanowires heterostructures for enhanced oxygen evolution selectivity in seawater splitting. Advanced Functional Materials 2024 DOI: 10.1002/adfm.202315949

  7. Ultra-thin Co0.5NiS nanosheets for hydrazine oxidation assisted nitrite reduction. Advanced Functional Materials 2024, 34, 2310288.

  8. Au nanocrystals modified holey PtTeAu metallene heteronanostructures for plasmon-enhanced nitrate electroreduction. Advanced Functional Materials 2024, 34, 2310730.

  9. Polyethyleneimine functionalized gold nanodendrites for gluconic acid electroreduction. Chemical Engineering Journal 2024, 585,149718.

  10. Ultrathin RhCu bimetallenes for the selective electro-oxidation of glycerol. Chemical Engineering Journal 2024, 482, 148960.

  11. Progress in MXene‐based catalysts for oxygen evolution. Electron 2024 DOI: 10.1002/elt2.17 (国产新刊,邀稿).

  12. Recent advances in proton exchange membrane water electrolysis. Chemical Society Reviews 2023, 52, 5652.

  13. Highly efficient electroenzymatic cascade reduction reaction for the conversion of nitrite to ammonia. Advanced Energy Materials 2023, 13, 2300669.

  14. Efficient promotion of ethanol complete electrooxidation by anti-poisoning rhodium-bismuth alloy nanodendrites. Applied Catalysis B: Environmental 2023, 337, 12296.

  15. Bifunctional PdPt bimetallenes for formate oxidation boosted water electrolysis. Carbon Energy 2023, 5, e367.

  16. Pt-Te alloy nanowires towards formic acid electrooxidation reaction. Journal of Energy Chemistry 2023, 85, 481.

  17. RuP nanoparticles anchored on N-doped graphene aerogels for hydrazine oxidation-boosted hydrogen production. Acta Physico-Chimica Sinica 2023, 39, 2303028.

  18. Intermetallic PtTe metallene for formic acid oxidation assisted electrocatalytic nitrate reduction. Energy Lab 2023, 1, 220022 (国产新刊,邀稿).

  19. Platinum-tellurium alloy metallene towards formic acid oxidation reaction. Renewables 2023, 1, 90 (国产新刊,邀稿).

  20. Organic Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. Journal of Energy Chemistry 2023, 77, 209.

  21. Chemical functionalized noble metal nanocrystals for electrocatalysis. Chinese Journal of Catalysis 2023, 45, 6.

  22. Chemical functionalization of commercial Pt/C electrocatalyst towards formic acid electrooxidation. Chemical Engineering Journal. 2023, 476, 146529.

  23. Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Advanced Energy Materials 2022, 12, 2103916.

  24. Porous palladium phosphide nanotubes for formic acid electrooxidation. Carbon Energy 2022, 4, 283.

  25. A rhodium-cobalt alloy bimetallene towards liquid C1 molecules electrooxidation in alkaline media. Journal of Materials Chemistry A 2022, 10, 20343.

  26. Ultrafine Pd@PdPt nanowires with a single-atom alloy shell for efficient formate oxidation. Journal of Materials Chemistry A 2022, 10, 24701.

  27. Au core-PtAu alloy shell nanowires for formic acid electrolysis. Journal of Energy Chemistry 2022, 65, 94.

  28. Heterostructured Pd/PdO nanowires for selective and efficient CO2 electroreduction to CO. Journal of Energy Chemistry 2022, 70, 407.

  29. Plasma induced Fe-NX active sites to improve the oxygen reduction reaction performance. Advanced Sensor and Energy Materials 2022, 1, 100005 (国产新刊,邀稿).

  30. Single atomic cobalt catalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399 (国产新刊,邀稿).

  31. Rhodium–cobalt alloy nanotubes toward methanol oxidation reaction. Small Structures 2022, 3, 202200046.

  32. Nitrogen‐doped graphene aerogel‐supported ruthenium nanocrystals for pH‐universal hydrogen evolution reaction. Chinese Journal of Catalysis 2022, 43, 1535.

  33. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. Journal of Materials Chemistry A 2021, 9, 8444.

  34. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution. Science Bulletin 2021, 66, 2079.

  35. Highly active hollow RhCu nanoboxes toward ethylene glycol electrooxidation. Small 2021, 17, 2006534.

  36. Au@Ir core-shell nanowires towards oxygen reduction reaction. Chemical Engineering Journal 2021, 421, 129760.

  37. Hierarchical porous Rh nanosheets for methanol oxidation reaction. Applied Catalysis B: Environmental 2020, 264, 118520.

  38. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Applied Catalysis B: Environmental 2020, 270, 118880.

  39. Au@Rh core-shell nanowires for hydrazine electrooxidation. Applied Catalysis B: Environmental 2020, 278, 119269.

  40. Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. Journal of Materials Chemistry A 2020, 8, 15875.

  41. Porous Pd-PdO nanotubes for methanol electrooxidation. Advanced Functional Materials 2020, 30, 2000534.

  42. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. Journal of Energy Chemistry 2020, 47, 234.

  43. Conductive metal–organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Advanced Science 2020, 7, 2000012.

  44. Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. Applied Catalysis B: Environmental 2020, 265, 118567.

  45. Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Applied Catalysis B: Environmental. 2020, 268, 118393.

  46. Metal-organic interface engineering for boosting the electroactivity of Pt nanodendrites for hydrogen production. Journal of Energy Chemistry 2020, 51, 105-112.

  47. KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 2019, 153, 6.

  48. Rh nanoroses for isopropanol oxidation reaction. Applied Catalysis B: Environmental 2019, 259, 118082.

  49. Ruthenium(iii) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A 2019, 7, 25433.

  50. Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. Journal of Materials Chemistry A 2019, 7, 16437.

  51. Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. Journal of Materials Chemistry A 2019, 7, 20658.

  52. Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A 2019, 7, 5575.

  53. Glycerol oxidation assisted electrocatalytic nitrogen reduction: Ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflakes nanoaggregates. Journal of Materials Chemistry A 2019, 7, 21149.

  54. Polyethylenimine-modified nickel phosphide nanosheets: interfacial protons boost the hydrogen evolution reaction. Journal of Materials Chemistry A 2019, 7, 13770.

  55. Salt-templated construction of ultrathin cobalt doped iron thiophosphite nanosheets toward electrochemical ammonia synthesis. Small 2019, 15, 1903500.

  56. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angewandte Chemie International Edition 2018, 57, 7649.

  57. 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon 2018, 139, 137.

  58. Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions. Journal of Materials Chemistry A 2018, 6, 17771.

  59. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. Journal of Materials Chemistry A 2018, 6, 3211.

  60. From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electrooxidation. Journal of Materials Chemistry A 2018, 6, 17164.

  61. Selective Etching Induced Synthesis of Hollow Rh Nanospheres Electrocatalyst for Alcohol Oxidation Reactions. Small 2018, 14, 1801239.

  62. Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy 2018, 54, 238.

  63. Au nanowires@Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media. ACS Catalysis 2018, 8, 11287.

  64. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catalysis 2018, 8, 1913.

  65. Hollow Pd-Sn nanocrystals for efficient direct H2O2 synthesis: The critical role of Sn on structure evolution and catalytic performance. ACS Catalysis 2018, 8, 3418.

  66. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Advanced Energy Materials 2018, 8, 1801326.

最近更新时间:2024-03-01 17:50 点击量:[] 次


扫描此二维码手机上查看当前信息